
S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                11 | P a g e  

 

 

 

Measurement and Analysis of Test Suite Volume Metrics for 

Regression Testing 
 

S Raju
1
 and G V Uma

2 

1
Associate Professor, Department of Computer Science & Engineering, Sri Venkateswara College of 

Engineering, Sriperumbudur, Tamilnadu, India – 602 117  
2
Professor, Department of Information Science & Technology, College of Engineering Guindy, Anna University 

Chennai Tamilnadu, India – 600 025 

 

Abstract 
Regression testing intends to ensure that a software applications works as specified after changes made to it 

during maintenance.  It is an important phase in software development lifecycle. Regression testing is the re-

execution of some subset of test cases that has already been executed. It is an expensive process used to detect 

defects due to regressions. Regression testing has been used to support software-testing activities and assure 

acquiring an appropriate quality through several versions of a software product during its development and 

maintenance. Regression testing assures the quality of modified applications. In this proposed work, a study and 

analysis of metrics related to test suite volume was undertaken. It was shown that the software under test needs 

more test cases after changes were made to it.  A comparative analysis was performed for finding the change in 

test suite size before and after the regression test. 

Keyword – Regression Testing, Test Suite Volume, Defect Density, Defect Analysis, Defect Removal 

Efficiency 

 

I. INTRODUCTION 

Regression testing is a process of executing 

the program to detect defects by retesting the 

modified portion or entire program. This can be 

performed by running the existing test suites or a new 

extended test suite against the modified code to 

determine whether the changes affect the entire 

program that worked properly prior to the changes. 

Adequate coverage will be a primary concern when 

conducting regression tests. The process of regression 

testing can be stated as follows.  Let S be a program 

and S' be a modified version of program S; let T be a 

set of test cases for P then T' is selected from T that is 

subset of T for executing P', establishing T' 

correctness with respect to P'.  Regression testing 

process consisted of steps that include Regression test 

selection problem, Coverage identification problem, 

Test suite execution problem and Test suite 

maintenance problem. 

   Sometimes, the existing test suit may not be 

sufficient to test the modified code.  In such case, an 

extended test suite is required to cover the defects 

created due to modifications.  Modifications to the 

current version of the software can be an addition or 

deletion of new features in terms of modules or  

altering the existing features.   

   Constructing extended test suite to test the new 

version of the software needs more careful effort of 

the testers.  Test suite volume obviously grows 

proportionately with number of modifications 

introduced.  Addition of randomly generated test 

cases has been shown to be effective.  Also 

combinatorial based approach for adding test cases 

was also effective.  In this work, two different kinds 

of applications are considered for measuring the test 

metrics.  First category of software applications are 

small in size, up to 1 KLOC and the second category 

of software applications are larger in size, varying 5 

to 30 KLOC. 

 

II. RELATED WORKS 

The literature survey revealed that many 

researchers have attempted to study the metrics 

related to software regression testing and test suite 

size.  A brief review of some recent research on this 

area is presented here.  The objective of regression 

testing is to have the highest likelihood of finding the 

defects yet-to-detect with a minimum amount of time 

and effort. This measurement help us to  manage and 

control the software testing process.  

Kan and Konda classified test metrics into 

three categories: product metrics, project metrics and 

process metrics. The test metrics can be used to 

measure and improve quality of test process and/or 

software product.  Test metrics are a subset of 

RESEARCH ARTICLE                                                                              OPEN ACCESS 



S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                12 | P a g e  

software metrics - product metrics, process metrics 

[1][2].  

Gregg Rothermel  presented various 

methodologies for improving regression testing 

processes. The cost-effectiveness of these 

methodologies have been shown to vary with 

characteristics of regression test suites. One such 

characteristic involves the way in which test inputs 

are composed into test cases within a test suite. This 

article reports the results of controlled experiments 

examining the effects of two factors in test suite 

composition---test suite granularity and test input 

grouping---on the costs and benefits of several 

regression-testing-related methodologies: retest-all, 

regression test selection, test suite reduction, and test 

case prioritization. The results exposed the essential 

tradeoffs affecting the relationship between test suite 

design and regression testing cost-effectiveness, with 

several implications for practice [3].  

Mrinal Kanti Debbarma presented that the 

Software metrics was applied to evaluate and assure  

software code quality.  It requires a model to convert 

internal  quality attributes to code reliability. High 

degree of complexity in a component (function, 

subroutine, object, class etc.) is bad in comparison to 

a low degree of complexity in a component. Various 

internal codes attribute which can be used to 

indirectly assess code quality. In this paper, they 

analyzed the software complexity measures for 

regression testing which enables the tester/developer 

to reduce software development cost and improve 

testing efficacy and software code quality. This 

analysis was based on a static analysis and different 

approaches presented in the software engineering 

literature [4].  

Ruchika have proposed both regression test 

selection and prioritization technique. They 

implemented their regression test selection technique 

and demonstrated that their technique was effective 

regarding selecting and prioritizing test cases. The 

proposed technique increases confidence in the 

correctness of the modified program [5].   

R Kavitha have proposed a prioritization 

technique to improve the rate of fault detection of 

severe faults for Regression testing. Here, two factors 

rate of fault detection and fault impact for prioritizing 

test cases are proposed. The results prove that the 

proposed prioritization technique was effective[6].  

Roya Alavi and Shahriar Lotfi presented  a 

software system testing methodology that includes a 

large set of test cases. Test selection helps to reduce 

this cost by selecting a small subset of tests that are 

likely to reveal faults. The test selection helps to 

reduce cost by selecting a small subset of tests that 

find to faults. The aim is to find the maximum faults 

of program using minimum number of test 

instances[7].  

Pakinam N. Boghdady  explain that the 

software testing immensely depends on three main 

phases: test case generation, test execution, and test 

evaluation. Test case generation is the core of any 

testing process; however, those generated test cases 

still require test data to be executed which makes the 

test data generation not less important than the test 

case generation. This kept the researchers during the 

past decade occupied with automating those 

processes which played a tremendous role in 

reducing the time and effort spent during the testing 

process. This paper explores different approaches that 

had emerged during the past decade regarding the 

generation of test cases and test data from different 

models as an emerging type of model based testing. 

Unified Modeling Language UML models took the 

greatest share from among those models[8].   

Jayant et al have proposed a study on test 

case prioritization based on cost, time and process 

aspects. Prioritization concept increases the rate of 

fault detection or code in time and cost constraints. 

They have concluded that prioritization of test case or 

a test suit has different aspects of fault detection[9]. 

 

III. PROJECTS AND RELATED DATA 

The proposed research work consisted of 

many modules.  Our first module consisted of 

modifications to existing features and addition of new 

modules manually.. Each applications considered 

separately for identifying the segments where the 

proposed changes are to be made.  In effect, the size 

of the applications projects will be increased.  Only 

in case of small programs, the code size may or may 

not increase.  Second module consisted of running 

the existing test suites against these new versions of 

the application projects.  For re-testing, the Junit test 

tool is used under Net Beans IDE with Java JDK.    

The test results are then examined for their 

completeness of test execution.  If any test result 

indicates that test process is not completed, then we 

need to add new test cases to the existing test suite. 

For adding new test cases, we either follow random 

approach or combinatorics approach. Details of the 

small projects used in the proposed research work 

such as project size, test suite size, defects count are 

shown in the table 1 and that of large projects are 

shown in the table 2.   

The metrics such defect density, Test Case 

Efficiency, Test Suite volume increase are calculated 

before regression testing and after the modifications 

and after regression testing.  



S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                13 | P a g e  

Table 1 Small Programs & other details 

SL. 

NO 

Problem / 

Project 

Size  

(LOC) 

(S) 

No. of 

Modules 

/ Functions 

(M) 

No. of 

Defects 

Found (D) 

Test 

Suite 

Size 

(N) 

1  Triangle Classification  25 5 12 35 

2  Square Root Problem  19 4 9 24 

3  Electricity Bill Generation  155 13 20 96 

4  Simple Calculator Program  250 18 38 126 

5  Simple Editor Program  452 29 69 204 

 

Table 2 Large Size Projects & other details 

SL. 

NO 

Problem / 

Project 

Size  

(LOC) 

(S) 

No. of 

Modules 

/ Functions 

(M) 

No. of 

Defects 

Found (D) 

Test 

Suite 

Size 

(N) 

1 Payroll System 15 60 1012 1435 

2 Infrastructure Mgt. System 21 64 1290 1524 

3 Library System 8 45 629 1096 

4 Project Mgt. System 25 75 2638 2926 

5 Banking System 31 94 3869 4204 

 

IV. RESEARCH OBJECTIVES 

The proposed research work address the 

following issues in detail. For answering these 

questions, regression testing is performed and the 

results are presented in table format as well as in the 

graphical format in the following sections.   

 

RQ1. What is the effect of adding new features and 

modifying existing features of the current release 

over the previous releases of software? 

RQ2. Whether the existing Test Suit is good enough 

to test the modified version of the program?  

RQ3. What is the effect of modification of software 

projects on the test suite volume size? 

   

Regression testing involves reusing test 

suites which have been created for earlier versions or 

releases of the software. By reusing these test cases, 

the costs of designing and creating test cases can be 

amortized across the lifetime of a system.  When an 

existing software projects are modified to incorporate 

the changes in user requirements, the code size 

increases proportionately.  Also when we try to add 

new modules for adding new functionality, the code 

size and number of modules increases.    These 

applications are taken to experiment the effectiveness 

of Testing after modifications and new additions. 

With industry data, we have calculated the test 

metrics - Defect Density per LOC or KLOC and Test 

Case Efficiency before performing regression testing.  

These metrics are shown in the table 3 and table 4 

respectively for small and larger size projects. 

Defect density is obtained by dividing 

number of defects covered by the program/project 

size and Test Case Efficiency is calculated as 

percentage of defect covered divided by the number 

of test cases.  Since the proposed research work 

addresses the issue of effective regression testing, 

these projects are modified in two ways.  Either a set 

of new features/modules are added or/and the 

existing modules are modified.  

 

 

 



S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                14 | P a g e  

Table 3 Defect Density and Test Case Efficiency for small programs 

SL. 

NO 

Problem / 

Project 

Test 

Suite 

Size (N) 

No. of 

Defects 

Covered 

(D) 

Defect 

Density 

per LOC 

(D/S) 

TC Efficiency 

(D/N)*100 

1 Triangle Classification 35 12 0.480 25.714 

2 Square Root Problem 24 9 0.474 41.667 

3 Electricity Bill Generation 96 20 0.129 20.833 

4 Simple Calculator Program 126 38 0.152 30.159 

5 Simple Editor Program 204 69 0.153 33.823 

 

Figure 1 shows the defect density before 

regression test for smaller size programs.   

The defect density for each 

projects/programs is calculated by using the formula  

 

 
 

Test Case Efficiency is calculated using 

the formula  

 
 

It is obvious that when we add new set of 

functionalities, the code size and number of 

modules always increases.    These applications are 

considered for conducting re-test so as to measure 

the effectiveness of Testing after modifications and 

new additions.  

Figure 2 shows the test case efficiency for 

smaller size projects. 

Defect Density / LOC or KLOC

0

0.1

0.2

0.3

0.4

0.5

0.6

Triangle Square Root Electricity Bill Calculator Simple Editor

Programs

D
e
fe

c
t 

D
e
n

si
ty

 
Fig. 1 Defect Density before Regression Testing for smaller size programs 

\

Test Case Efficiency

0

5

10

15

20

25

30

35

40

45

Triangle Square Root Electricity Bill Calculator Editor

Programs

T
C

 E
ff

ic
ie

n
c
y

 %

 

Fig. 2 Defect Density before Regression Testing for Larger size programs 

  



S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                15 | P a g e  

Table 4 Defect Density and Test Case Efficiency for Larger programs 

SL. 

NO 

Problem / 

Project 

Test 

Suite 

Size 

(N) 

No. of 

Defects 

Covered 

(D) 

Defect 

Density 

per KLOC 

(D/S) 

TC Efficiency 

(D/N)*100 

1 Payroll System 1435 1012 67.467 70.523 

2  Infrastructure Mgt. System  1524  1290  61.429  84.645  

3  Library System  1096  629  78.625  57.391  

4  Project Mgt. System  2926  2638  105.520  90.157  

5  Banking System  4204  3869  124.806  92.031  

 

 

Figure 3 shows the defect density before regression 

for larger size programs. 

Figure 4 shows the test case efficiency for smaller 

size projects. 

 

 
Fig. 3 Defect Density before Regression Testing for Larger Projects 

 
Fig. 4 Test Case Efficiency before Regression Testing for Larger Projects 

 

V. REGRESSION TESTING OF 

APPLICATIONS 

Before performing the regression testing 

we added new features and also modified existing 

features.  Due to this code size of the 

projects/programs have increased.  Consequent to 

this, the test suite is assed with more number of test 

cases so as to run the programs /projects against 

this extended test suite.  Table 5 shows the details 

of small programs after the regression testing.  It is 

observed that there is increase in test suite volume 



S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                16 | P a g e  

and defect counts.  Figure 5 given below shows 

that the number of defects increases when the 

programs are modified due to change in user 

requirements. 

 

Table 5 Effect of Modifications for  Small Programs 

SL. 

NO 

Problem / 

Project 

Size  

(S) 

(LOC) 

No. of 

Modules 

No. of Defects 

Found (D) 

Test Suite 

Size (N) 

Old New Total Old New Total 

1 Triangle Classification 20 5 12 9 17 35 6 41 

2 Square Root Problem 22 4 9 10 19 24 5 29 

3 Electricity Bill 195 15 20 9 29 96 10 106 

4 Simple Calculator 290 20 38 7 45 126 9 135 

5 Simple Editor Program 402 30 69 11 80 204 9 213 

 

 
Fig 5 Number of defects before and after Regression Testing for Small Programs 

 

The test suite volume increases for covering 

these additional defects due to modifications as 

shown in the figure 6 below. 

Similarly, when we modify the larger 

projects to incorporate changes in user requirements, 

number of defects increases.  Hence the original test 

suite should be added with more test cases to find 

these defects.  This is shown in the table 6 given 

below. 

 



S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                17 | P a g e  

 
Fig 6 Increase of Test Suite Volume after Regression Testing for Large Programs 

 
Table 6 Effect of Modifications for  Larger Projects 

Sl. 

NO 

Problem / 

Project 

Size  

(S) 

(KLOC) 

No. of 

Module 

No. of Defects 

Found (D) 

Test Suite 

Size (N) 

Old New Total Old New Total 

1 Payroll System 15.4 65 1012 57 1069 1435 46 1481 

2 Infrastructure Mgt. Sys. 21.3 67 1290 62 1352 1524 55 1579 

3 Library System 8.5 51 629 24 653 1096 40 1136 

4 Project Mgt. System 25.4 73 2638 48 2686 2926 47 2973 

5  Banking System  30.6  90  3869  81  3950  4204  52  4256  

 

Figure 7 given below shows that the number of 

defects increases when the programs are modified 

due to change in user requirements in case of larger 

applications. 

 
 Fig 7 No. of defects before and after Regression Testing for Larger Programs 



S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                18 | P a g e  

The test suite volume increases for covering these 

additional defects due to modifications as shown in 

the figure 8 below.   When we compare the metrics 

defect density and test case efficiency of the test 

suites before and after the regression testing, both 

increased to some extent for most of the 

programs/projects. 

 
Fig 8 Increase of Test Suite Volume after Regression Testing for Larger Projects 

  

  This can be seen in the table 7 and 

graphically shown in the Figures 9(a) and Figure 9(b) 

below.  Figures 10(a) and 10(b) shows the Test Case 

Efficiency before and after the Regression Testing. 

 
Table 7 Defect Density and Test Case Efficiency after and before the Regression Testing 

 

SL. 

NO 

Problem / 

Project 

Defect Density Test Case Efficiency 

BR AR BR AR 

1 Triangle Classification 0.480 0.850 25.714 41.463 

2 Square Root Problem 0.474 0.863 41.667 65.517 

3 Electricity Bill Generation 0.129 0.149 20.833 27.358 

4 Simple Calculator Program 0.152 0.155 30.159 33.333 

5 Simple Editor Program 0.153 0.199 33.823 37.558 

6 Payroll System 67.467 69.416 70.523 72.181 

7 Infrastructure Mgt. System 61.429  63.474 84.645  85.624 

8 Library System 78.625  76.824 57.391  57.482 

9 Project Mgt. System 105.520  105.748 90.157  90.346 

10  Banking System 124.806  129.085 92.031  92.810 

 



S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                19 | P a g e  

 
Fig 9(a) Defect Density for small Programs 

 
Fig 9(b) Defect Density for Large Programs 

 
Fig 10(a) Test Case efficiency for small Programs 



S Raju et al Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.11-20 

 

 
www.ijera.com                                                                                                                                20 | P a g e  

 
Fig 10(b) Test Case efficiency for Large Projects 

I.  

 
VI. RESULT ANALYSIS AND CONCLUSION 

In this research work,  we have obtained the 

following results.   When we compare project size, 

there is an increase in code size.  Also when we 

compare the test suite volume size, it is shown that 

number of test cases also increased for testing the 

modified code.  These factors also have shown that 

the testing metrics such as defect density, test case 

efficiency also increase for many of the programs 

that we considered. Also it is shown that the existing 

test suite may not be good enough to test the 

modified code thereby we need to add new set of test 

cases. 

 

REFERENCES 

 
[1] Kan, S. H. Metrics and Models in Software 

Quality Engineering, Second Edition, 

Addison-Wesley, Boston, 2004. 

[2] Konda, K. R. “Measuring Defect Removal 

Accurately, Software Test & Performance,” 

Vol. 2, No. 6, July, 2005, pp. 35-39. 

[3] Gregg Rothermel, Sebastian Elbaum, 

Alexey G. Malishevsky, Praveen Kallakuri  

and Xuemei Qiu, “On test suite composition 

and cost-effective regression testing”, ACM 

Transactions on Software Engineering and 

Methodology (TOSEM) TOSEM Homepage 

archive, Volume 13 Issue 3, Pp. 277 – 331, 

July 2004. 

[4] Mrinal Kanti Debbarma, Nagendra Pratap 

Singh, Amit Kr. Shrivastava and Rishi 

Mishra, " Analysis of Software Complexity 

Measures for Regression Testing", ACEEE 

Int. J. on Information Technology, Vol. 01, 

No. 02, Sep 2011. 

[5] Ruchika Malhotra, Arvinder Kaur and 

Yogesh Singh, "A Regression Test Selection 

and Prioritization Technique," Journal of 

Information Processing Systems, Vol.6, 

No.2, pp.235-252, Jun 2010. 

[6] R. Kavitha and N. Sureshkumar, "Test Case 

Prioritization for Regression Testing based 

on Severity of Fault," International Journal 

on Computer Science and Engineering, Vol. 

2, No. 5, pp.1462-1466, 2010. 

[7] Roya Alavi and Shahriar Lotfi, " The New 

Approach for Software Testing Using a 

Genetic Algorithm Based on Clustering 

Initial Test Instances", proc. of International 

Conference on Computer and Software 

Modeling IPCSIT vol.14 (2011) © (2011) 

IACSIT Press. 

[8] Pakinam N. Boghdady, Nagwa L. Badr, 

Mohamed Hashem and Mohamed F.Tolba, " 

Test Case Generation and Test Data 

Extraction Techniques", International 

Journal of Electrical & Computer Sciences 

IJECS-IJENS Vol: 11 No: 03, 113803-9191 

© June 2011 

[9] K.P. Jayant and Ajay Rana, "Prioritization 

Based Test Case Generation In Regression 

Testing," International Journal of Advances 

in Engineering Research (IJAER), Vol.1, 

No.5, May 2011. 


